


• Better web compatibility for our customers

• Less fragmentation of the web for web developers

• Deliver and update for all supported versions of Windows and on a 

more frequent cadence

• Join forces to evolve the web



When seeking 

improvements in the 

web platform, our 

default position will be 

to contribute

We will respect the 

architectural 

requirements and 

engineering 

approaches used in 

Chromium

We believe the 

evolution of the web is 

best served through 

standards bodies

We are making this 

decision for the long 

term

1 2 3 4



Accessibility Editing Security

ARM64 Fonts Tooling

Authentication Layout Touch

Battery life Scrolling Web Standards





• Created a Goma service on 

Azure

• Utilizing Azure load balancing

Goma

• Handles PRs from our team

• Merges ~450 changes from 

upstream Chromium daily

• Resolves ~75 conflicts daily

• Rolling builds

• Daily release builds

• Based on Jenkins & Azure

Homegrown ES

• Exploring porting LUCI to Azure

• Looking at layers of abstraction: 

GAE, NDB

• Should scale well to our needs

• If successful, we are interested in 

contributing to LUCI

LUCI



• Telemetry

UMA/UKM uploaded to our instrumentation services (1DS)

• Crash reporting

Connected to our Watson service

• Experimentation 

Integrated with our Experimentation and Configuration Service (ECS)



• We upload UMAs (UKMs soon) using 1DS client SDK

Takes care of upload and retries, populating common 

schema fields, privacy requirements

• Privacy requirements include

• Privacy classification: critical, measure, telemetry

• Transparency requirements (GDPR)



Edge Reporting Service

New Edge Reporting 

Service

Work from persisted log

Deserialize using 

protobuf_full

Split to 1DS schema

Decompress
Deserialize
Parse

Log
Persisted 

Log

Serialize
Compress

Rotate

Chromium
Reporting Service

Chromium
Uploader

Split 1DS
Client

Google Microsoft



Edge Reporting Service

Potential 

Improvements:

Work directly from in-

memory log

Move off main thread

Use differential privacy 

reporting (RAPPOR)?

Decompress
Deserialize
Parse

Log
Persisted 

Log

Serialize
Compress

Rotate

Chromium
Reporting Service

Chromium
Uploader

1DS
Client

Google Microsoft

Split





In-progress:

• Accessibility (UIA)

• High contrast

• Caption Styling (Web VTT)

• Native caret browsing

• ARM 64

• TSF1

Other areas we would like to help with:

• PDF enhancements

• Battery life

• Smooth Scrolling

• Editing

• Layout

• Dev tools

• Web Authentication

~300 merges so far



Implements:

• Auto-correction

• Keyboard suggestions

• Shape writing

• IME reconversion after composition

Built on existing (inactive) implementation

Available on Win7, 8.1, 10



Areas we would like to contribute

• Fundamentals: bug fixes, test coverage

• Accessibility enhancements: better screen reader, high contrast

• Smooth Scrolling: HTML based layout

• Simplification of process model



3 areas of investigation:

• High resolution timer in 

message pump

• Disk cache during video 

playback

• Audio offloading to hardware

Edge on Chromium

Chrome

EdgeHtml
Web Media Battery – Summary Power Report



On Windows 10 Insider: 

• Rely on OS (size caps increased)

On Win8 – Win10 1809: 

• Chromium pre-reads file in MapFile

memory -> forces a copy

• Instead map file as Image, and fetch 

using PrefetchVirtualMemory

• Savings for chrome.dll: 80+ MB 

MapFile System Cost



Scrollbar latency

• Intent to Implement 

impl-threaded scrollbars

Missed frames (investigating)

• Composition thread priority

• GPU contention, scheduling

misses, IPC delays



Smooth Scrolling

We would love to help with:

• BlinkGen Property Tree (BGPT)

• Composition After Paint (CAP)

• Independent rendering

LayoutNG

We went through a similar 

transition in EdgeHtml in IE9





• PlayReady DRM

• Services integration

• Single Sign-On



Why PlayReady?

• 4k streaming DRM content (e.g., Netflix)

• Hardware decryption/decoding

• Software decryption in protected process (LPAC)

• Power savings: offloaded audio, video batching

Edge supports PlayReady and Widevine



MF Media + CDM Service Process (LPAC)

GPU 
Process

DCOMP 
Surface 
Registry

DCOMP 
GLImage

Renderer Process

WebMediaPlayerImpl

Demux

PlayReadySwitchingRenderer

DefaultRenderer
MFMediaEngine

RendererClient

DirectComposition
SurfaceWin
(GLSurface)

GLRenderer

MFMediaEngineRenderer

Inbox OS Media Foundation
MFMediaEngine

DWM Process

OS Compositor

(DCOMP)
DCOMP
Surface

Video 
Frames

• Supported by Windows 

Media Foundation

• New MediaEngineRenderer

and CDM in sandbox

• Uses existing support of 

Direct Composition (DCOMP)

Edge specific



Overall, after ramping up on 

the architecture, it was 

relatively easy to plug-in 

PlayReady DRM

Mostly small issues: 

• Chromium kills renderer after 1 min of 

pause 

• Sites get confused because Edge 1st to 

support PlayReady and Widevine

• Still fixing bugs!



Safe browsing

Nearby messages

Link Doctor

Ad blocking

User data sync

Spellcheck

Suggest

Translate

SmartLock

Form Fill

Push Notifications

WebStore

Extension Store

Maps Geolocation

Google Now

Speech input

Google Pay

Drive API

Chrome OS hardware id

Device registration

Google Maps Time zone

Google Cloud Storage

Cloud Print

Google DNS

Supervised Profiles

Address Format 

Network Location

Network Time

Favicon service

Google Cloud Messaging 

Single sign-on (Gaia)

Content Hash Fetcher

Flighting Service

Component Updater Service

RAPPORT service

Chrome OS monitor 

calibration

Chrome OS device 

management

Android app password sync

Offline Page Service

Feedback 

Domain Reliability Monitoring

Data Reduction Proxy

Chrome Cleanup

Developer Tools Remote 

Debugging

iOS Promotion Service

One Google Bar Download

Brand Code Configuration 

Fetcher

WebRTC Logging

Captive Portal Service



Edge supports:

• MSA or AAD identities

• App to browser SSO

• Browser to app SSO

• OS to browser SSO

• Browser to site SSO

SigninViewController
::ShowSignIn

Sign-in Menu Sign-in Button

EdgeAuthenticationManager
::StartSignIn OneAuth

Login UX
Token Fetching

App and OS SSO
Website SSO

…
EdgeAuthenticationManager

::StartSignIn callback Async

Populate User Info into UI Edge specific

OAuth2TokenServiceDelegate
::CreateAccessTokenFetcher

EdgeAccessTokenFetcherImpl

EdgeAccessTokenFetcherImpl
HandleAccessTokenFetch callback

Proceed with Service Call

Access Token Needed for Service Call



• Thank you for a great partnership!

• We made hundreds of changes to Chromium to produce Edge

• Contributed 300+ merges so far and planning on contributing much more!

• We’re building expertise in many areas of the code base

• Overall, building Edge on Chromium was a relatively smooth process

• Looking forward to contributing more!




